Home

Home

I design algorithms for machine learning on time series, build scalable vector search systems, and turn research results into reliable open-source software. My work spans theory, benchmarking methodology, and end-to-end engineering.

Contact

Postal address

Humboldt-Universität zu Berlin
Department of Computer Science
Unter den Linden 6
10099 Berlin

Visiting address

Rudower Chaussee 25
12489 Berlin
Room 4.407

Phone: 030-2093-41287

Research interests

  • Time series analytics: classification (BOSS, WEASEL), motif discovery (Motiflets, Leitmotifs), segmentation (ClaSP, ClaSS, ClaP)
  • Vector search and high-dimensional indexing for similarity search at scale
  • Benchmarking methodology and reproducible experimentation for ML systems

Teaching highlights

Recent courses (full archive on Teaching):

  • WiSe 2025/26: Data Science mit Python · Vector Search (Master)
  • SoSe 2025: Angewandtes Maschinelles Lernen
  • WiSe 2024/25: Data Warehousing and Data Mining
  • SoSe 2024: Information Retrieval · Algorithmen und Datenstrukturen
  • WiSe 2023/24: Angewandtes Maschinelles Lernen · Algorithmen und Methoden der Zeitreihenanalyse

Selected publications

Recent highlights—see Publications for the full list.

  • CLaP — State Detection from Time Series, PVLDB 2026.
  • Fast and Exact Similarity Search in less than a Blink of an Eye, ICDE 2025.
  • MotiPlus and MotiSet: Discovering the best set of Motiflets in Time Series, ECML/PKDD 2025.
  • Discovering Leitmotifs in Multidimensional Time Series, PVLDB 2025.
  • aeon: a Python Toolkit for Learning from Time Series, JMLR 2024.
  • Raising the ClaSS of Streaming Time Series Segmentation, PVLDB 2024.
  • Motiflets — Simple and Accurate Detection of Motifs in Time Series, PVLDB 2023.
  • Bake off redux: A Review and Experimental Evaluation of Recent Time Series Classification Algorithms DMKD, 2024.

Service & projects

  • Organizer: AALTD Workshop (2022–2025), Human Activity Segmentation Challenge @ ECML/PKDD 2023
  • Program committees & reviews: KDD ’25, VLDB ’25–’26, ECML ’21–’24, AAAI ’21–’23, IJCAI ’20, TKDE, DMKD, IEEE Cybernetics, and more
  • Current open-source focus: aeon — machine learning from time series
  • Past projects: sktime (former core developer), MoSGrid, Harness, Contrail, XtreemFS

Open-source frameworks